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MAXIMUM MISSILE RANGES FROM
CASED EXPLOSIVE CHARGES

Introduction

There has been general interest in the problem of determining the hazard resulting

from fragmentary missiles from cased explosive charges. In particular, use of the cube

root formula* is believed to be unsatisfactory except as a rough estimate, since missiles

have been observed beyond the limits predicted by this formula. In this report an analysis

is made which takes account of the missile size and shape, as well as the weight of the ex-

plosive charge. It is found that missile size (or thickness) is the most important single

factor in determining maximum range. Missile thickness is the same as the thickness of

the surrounding case, unless folding occurs.

Initial Missile Velocities

It has been shown that the initial fragment velocity V can be calculated from the

Gurney energy-density constant (2E) 1/2 in conjunction with R, the ratio of case weight to

explosive charge weight.," 4 For a cylinder containing uniformly packed explosive material

the relation is

1 1

V = (2E) (0. 5 + R)

For a sphere, the expression (0. 5 + R), in the above formula is replaced by (0. 6 + R),
4

which results in a slightly lower fragment velocity. This case is not considered here, since

only maximum velocities are of interest in the estimation of maximum missile ranges.

The greatest possible fragment velocity occurs when the case weight is negligible

compared to the explosive weight. Then R approaches zero, and the initial fragment ve-

locity V0 approaches Vm, where

Safe Distance (feet) = 600 (charge wt)1 / 3 with explosive charge weight measured in
pounds of TNT equivalent.

2loo d 7W1
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1

Vm = (1. 41) (2E) ft/sec Maximum initial fragment velocity

The Gurney energy-density constant (2E)1/2 (feet per second) is tabulated in Ref.1

for a number of different explosives. For TNT the value of (2E)1/2 is 6940 ft/sec. Thus#S

for TNT, after multiplying by 1. 41

Vm = 9800 ft/sec

For other chemical explosives the maximum initial fragment velocities differ only slightly

from the value for TNT.

Therefore, it will be assumed that any case fragment moves initially at a speed not

greater than 10, 000 feet per second.

Missile Aerodynamic Drag

Once the maximum missile velocity has been assumed, the only remaining problem

is to determine the aerodynamic drag force on any shrapnel particle resulting from the

exploding case. Various drag coefficients are given by Hoerner for a number of regular

shapes at subsonic and supersonic velocities up to a Mach number of 10 (Chapter 16). 2

Since the speed of sound is about 1100 feet per second, a Mach number of 10 corresponds

to the initial fragment velocity assumed as a maximum in this report.

In order to relate this information to the calculation of drag forces on irregular

shapes such as the shrapnel fragments, it is necessary to consider the aerodynamic drag

mechanisms operating at supersonic velocities. Only two distinct classes of shapes need

be mentioned. The first class consists of regularly shaped projectiles which have sharp-

pointed conical or wedge-shaped noses. There is a negligible chance that a shrapnel frag-

ment would be produced which possessed a sufficiently regular shape to fall in this class.

Even if one did exist, it would not in general have its center of mass located so as to in-

sure a stable motion through the air with the sharp point or edge headed forward at all

times.

For these reasons it is only necessary to consider the second class of shapes, ie,

all those which do not have the special characteristics of the first class. A projectile of

the second class is characterized by a relatively constant drag coefficient over a wide range

of supersonic velocities.
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Except for regularly shaped round bodies (eg, spheres or cylinders), the drag coef-

ficient C for any second-class shape is always greater than 1. 0 for all supersonic and sub-D
sonic velocities. At supersonic velocities, even a sphere or a cylinder has a drag coefficient

which is not appreciably less than 1. 0. The physical basis for this behavior at transonic and

supersonic speeds is the occurrence of a detached shock wave some distance in front of the

projectile. It is known that the shock wave is detached for all projectiles except those in the

first class mentioned above, for the shock wave can be attached to the (sharp) nose of the

projectile only when the nose angle is less than 0, where sin 0 = l/M and M = Mach number.

All other projectiles fall in the second class and have a detached shock wave.

Assuming now that every shrapnel particle has a drag coefficient which is never less

than 1. 0, it is still necessary to consider the frontal projected area of the particle, since

the actual drag force, as opposed to the drag coefficient, depends on this projected area.

Thus it is necessary to investigate the orientation of the shrapnel particle as it moves through

the air, since the frontal projected area of any irregular shape will depend on its orientation.

In order to see how the various parameters contribute to the maximum horizontal range,

we discuss the fundamental range equation A-50* derived in the Appendix:

xR = (0.5) wzR (1)

with the symbol notation

xR = Horizontal range (ft)

zR = Dimensionless factor obtained from Fig. 1

w = Relaxation distance (ft) defined by Eq A-21

Inserting the expression for w given by Eq A-21 into Eq 1 above,

xR = (0.5)zRQ(k- 1 )a  (2)

with symbol notation

Q = Average value of cosine of vector velocity angle with respect to the
horizontal direction

k- 1 = Characteristic distance (ft) best defined by Eq A-109
a

Any formula or equation reference with the prefix "A" appears in the Appendix.
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In Eq 2, the value of Q is given by Eq A-90, which shows that it is nearly equal to the

cosine of the initial angle B of the projectile velocity vector with respect to the horizontal

direction. Hence it is fairly accurately known in advance, for a given initial angle B.

Referring to Fig. 1, we see that z R in Eq 2 is a logarithmic function of F. Referring to

Eqs A -68 and A -103, it is evident that F depends on the unknown characteristic distance

k a. Since x Ralso depends directly on k a as shown by Eq 2 above, we see that the un-

known characteristic distance k -1is of critical and decisive importance. Using magni-
a1

tudes averaged along the entire trajectory (subscript "a"), the distance k - is found to be
a

k aI= (0. 167)(s a) iCiP/P) (3)
a a \D/P

with the notation

Pa=Average value of the air density (gm/cm 3) along the trajectory

Pp= Density of projectile (gm/cm 3 Specific gravity of projectile
relative to water

-1Average value of CD along the trajectory, where CD is the drag
(C coefficient at any point along the trajectory (dimensionless)

s a Effective thickness (inches)of the projectile, averaged along
athe trajectory

The effective thickness s is defined as the projectile volume (in 3) divided by the

frontal projected area (in 2) which corresponds to the particular flight orientation of the

projectile at the trajectory point under consideration.

From the preceding analysis it is evident that the only unknown quantity of critical

importance in fidn -1is the effective thickness s of the projectile, as just defined.a
All other quantities in Eq 3 above can be fairly well estimated without detailed analysis.

For example, we have just seen that the drag coefficient C Dis never less than 1. 0, as

shown by Figs. 17 and 18 in Chapter 16, of Ref 2. The drag coefficient curves of Ref 2

apply to blunt nosed projectiles moving at Mach numbers from 0. 1 to 10. 0. In order to

determine the effective thickness s at any point along the trajectory, it is necessary to

investigate the frontal projected area of the projectile corresponding to any possible ori-

entation which may occur during its flight through the air.

The general condition for approximately stable flight of a nonrotating projectile re-

quires that the center of mass should be well ahead of the line of action of the resultant

aerodynamic drag force for at least a small range of orientations of the projectile in any

direction from a zero-lift attitude. Otherwise the particular zero-lift attitude assumed

is unstable, and the projectile tends to oscillate, or even tumble. For a homogeneous
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nonrotating particle having uniform density, an unstable zero-lift orientation is usually

reached when the fragment presents its minimum frontal projected area. This applies

especially to a thin flat sheet of material (provided the sheet is not rotating). An ex-

ample of such general behavior is the wobbling flight of a falling leaf. The leaf does not

move steadily in the edge-on direction, nor does it move with the flat area exactly at right

angles to the flight path. Rather, its direction oscillates in an irregular way because of

inherent instability. Nevertheless the average orientation more often corresponds to the

maximum area presentation than it does to the edge-on presentation, at least for flat

leaves. A highly curled leaf does not possess an unambiguous "flat", or "edge-on", ori-

entation.

A thin flat sheet is in general unstable when moving edge-on through the air, since

the aerodynamic lift force, at any small angle of attack, acts with a torque couple about

the center of mass which tends to rotate the sheet into a position with a larger angle of

attack. The larger angle of attack results in an increased torque, which tends to increase

the angle of attack even further, and so forth. Thus the "leading-edge" type of flight is

an unstable zero-lift orientation.

On the contrary, the perpendicular type of zero-lift orientation is at least semistable;

when a flat shape moves so that the maximum frontal area is presented, there is a range

of the angle of inclination within which the resulting torque is of the "restoring" variety

instead of the "overturning" variety. The restoring torque (approximately cosine) is very

small, which means that the flat shape may oscillate through a considerable angle before

any appreciable restoring torque comes into play. Thus the slightest air flow disturbance

results in directional oscillations which do not damp out readily. When the fragment turns

completely over, instead of merely oscillating back and forth, a more complicated analy-

sis is required. This is presented in the following section.

Effect of Rotation

The discussion in the preceding section applies only to a nonrotating projectile.

Since a case fragment may be rotating after leaving the explosion vicinity, it is essential

to estimate the effect this will produce on the maximum range distance. Let us analyze

a simple type of fragment.
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Consider a uniformly thick flat plate of irregular edge outline, as diagramed below:

Z LM y

WIW

The XY plane is parallel to either face of the plate. The PZ axis is perpendicular to

either face of the plate. It is not expected that all fragments will be entirely flat, as in

the diagram, because bending, curling or folding may take place. These effects will be

considered later, after the simplified analysis.

The most general motion of the fragment consists of a displacement of the center of

mass (Point P) along the line PM, plus a rotation about the center of mass, Point P. The

rotation can be described in terms of angular velocity components about the three princi-

pal perpendicular axes PX, PY, and PZ (fixed with respect to the fragment). The three

principal axes correspond to the axes of the tensor of inertia, defined as follows: The

angular momentum is defined as the product of the tensor of inertia and the angular

velocity vector. The tensor of inertia is diagonalized (off-diagonal elements are zero)

10



for only one orientation of a rectangular coordinate system through the center of mass.

Then the three diagonal elements of the tensor of inertia are the three "principal"

moments of inertia (about the axes PX, PY, and PZ, respectively).

The angular velocity component due to turning about the axis PZ will be called
1"spinning", while the resultant angular velocity about the axis PW due to turning about

PX and PY will be called "tumbling". Tumbling is measured by a single angular velocity

vector located along the axis PW, somewhere in the XY plane, whose components are the

angular velocities about the PX and PY axes, respectively.

The direction of motion PM, of the center of mass P, will not remain for any length

of time near the XY plane (parallel to either face of the plate) because of the instability

discussed in the previous section. When the direction PM of the center of mass displace-

ment is near the XY plane, and there is appreciable "spinning" (about the axis PZ), the

overturning aerodynamic torque will tend to cause precession of the total angular velocity

vector.

If the spinning velocity is relatively small, we may neglect the precession, and con-

fine our attention to the tumbling motion.

Neglecting precession, the axis PW tends to remain fixed in direction relative to

a stationary system of coordinates, because the angular momentum direction remains

nearly constant after the fragment leaves the explosion, Aerodynamic torque is zero

on the average, over one complete revolution, for a flat plate, although the torque at

every instant is not zero. Thus the magnitude of the angular momentum vector is sub-

ject to oscillation during the period of one complete tumbling revolution, but exhibits

negligible net change per revolution.

As already mentioned, the direction of PM, the displacement of the center of mass,

cannot remain permanently near the XY plane since this is an unstable configuration.

Therefore we consider only the case in which the direction of PM is perpendicular to the

tumbling axis PW which in turn is in the XY plane.

At any instant of time during a period of revolution (tumbling), the frontal projected

area A of the fragment will have a value which depends on the tumbling angle H at that in-

stant. From Eq A-1 in the Appendix, the drag force at any instant is proportional to the

frontal projected area A, and to the drag coefficient CD. In Fig. 29, Chapter 3, of Ref 2

it is shown that the drag coefficient CD of a very thin plate is practically constant, and

greater than 1. 0, over a wide range of inclination angles. According to Eq A-1, this

implies that the actual drag force is directly proportional to the projected face area AF

of the plate. At any instant this is equal simply to the actual face area of the plate Af

times the cosine of the inclination angle H. Thus
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A F = Af(cos H) (0< H< 900 ) (4)

When the inclination angle H is 90 degrees, the projected face area A is zero. Since
F

the plate which represents an actual shrapnel fragment has an appreciable thickness, the

edge area corresponding to this thickness will produce a certain residual drag force even

when the inclination angle H is 90 degrees. Thus it is necessary to include the projected

edge area AE in calculating the total projected area A of the plate at any instant. The

total projected area A at any instant is

A = AF + AE (5)

in which the projected edge area A E is

AE = A sin H(0< H<900 ) (6)E e -

and A is an edge area which can be defined in terms of the rotation axis W'PW in thee
diagram. When the inclination angle H is 90 degrees, the projected edge area AE is a

maximum, and equal to A e, according to Eq 6. The maximum projected edge area Ae

is equal to the thickness of the plate times the length AB. The length AB is the maximum

extension of the plate along the rotation axis W'PW. Substituting Eqs 4 and 6 into Eq 5,

A=Af cosH+A sinH(0< H< 900) (7)fe

The restriction of the inclination angle H to the first quadrant is required to insure that

each separate area in Eq 7 remains positive. From the symmetry of the plate, in which

the edge area Ae is assumed to be perpendicular to the face area Af, it follows that the

total projected area A will vary in the same way in each of the four quadrants during one

complete tumbling revolution of the plate. Thus Eq 7 can be used to obtain the projected

area A at any instant during a complete revolution of the plate.

Substituting the expression for A from Eq 7 into Eq A-i, the drag force fH at any

inclination angle H is

f = (0.5) CD PV 2 (Af c o s H+A sin H) (8)

H Da f csH Ae(8

in which the symbols represent

CD = Drag coefficient (dimensionless)

pa = Air density (gm/cm
3 )

12



V = Velocity of plate, center of mass (cm/sec)

fH = Dragforce (dynes)

The areas A and Af are measured in square centimeters.e f

If we define a thick plate shape factor RE (dimensionless) given by

R = A/A edge area (9)E e'f face area

we may eliminate A in Eq 8 and obtaine

fH = (0. 5) CDPaV 2Af(cos H + RE sin H) (10)

Solving Eq A-4 for A gives

A= 2km( PaC D ) (1l)

In Eq 11, define k = kf whenA= A Then

Af = 2kfm(.pCD) (12)

Substituting the value of A from Eq 12 into Eq 10 gives

fH = kfmV2 (co s H + RE sin H) (13)

with symbol designation

m = Mass of plate (gin)

kf or k = Air drag parameter defined by Eqs A-4 and A- 3'

The air drag parameter k has the dimension of reciprocal length, and is the same k pre-

viously appearing as characteristic distances k or k a, noted in connection with Eqs 2
a

and 3.

Assuming a uniform speed of rotation, in which the period of one complete revolution

is equal to T seconds, the inclination angle H at any instant of time t is found from

H (degrees ) = 360 0 (t/T)

or (14)

H (radians) = (6. 28)(t/T)
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The total drag impulse given to the plate during a complete revolution is four times the

impulse given in one quarter of a revolution, because the projected area varies in the same

way with respect to H in each of the four quadrants. Therefore the average drag force

can be found from the impulse I given to the plate during one quarter of a complete period

of revolution, T/4. The impulse for one quarter of a period is

I =T 4 fHdt (15)

Therefore, from Eqs 13 and 15, after eliminating H through Eq 14, the impulse I is

I = kfmV2 fT [cos (6. 28 tT) + RE sin (6. 28 t/T) Idt

which is equal to

I = (2/ ) kfmV2 (1 + RE) (T/4) (16)

The drag impulse I is defined in terms of the average force f during one quarter of ar
period of revolution

I = (T/4) fr (17)

Using the value of I from Eq 17, Eq 16 becomes

f = (1.57) - 1 kfmV2 (1 + RE ) (18)

If we consider a nontumbling plate which may oscillate slightly, the average pro-

jected area A is approximately equal to the face area Af. In this case we set A = Af in

Eq A-1 and eliminate Af, using Eq 12, which gives

ff kfmV 2  (19)

(nontumbling)

We can also obtain the same result by simply letting H = 0 in Eq 13. Dividing Eq 18 by

Eq 19, we obtain

fr/ff = (1.57) - 1 (1 + RE) (20)

14



Equation 20 shows the ratio of the average "tumbling" rotational drag force fr to the drag

force ff on a nontumbling plate.

In order to correct the horizontal range when the plate is tumbling, it is only nec-
-1

essary to correct the characteristic distance kf which corresponds to a nontumbling

plate. From Eq 19,

= (mV2 )  (21)

If we define a new characteristic distance k for the tumbling rotational case, Eq 21 be-
r

comes

k - 1 = (mV2)f - 1  (22)
r r

Dividing Eq 22 by Eq 21

k-r

f1 ff/fr 
(2 3)

Substituting the value of f f/f r from Eq 20 into Eq 23 gives

k-i1
r _ (1.57)(1 + RE) (24)

k f-1 1

in which k is the corrected value of kf 1 that must be used when the fragment is tumb-r
ling during flight. The value of kf is the same as the value of k in Eq A-4 with A replaced

by A Note that RE is defined by Eq 9. Equation 24 may also be considered to repre-

sent the ratio of the face area to the average projected area of the tumbling plate.

In Eq 24, the correction factor kr1/kf 1 has its largest value, namely 1.57, when

RE = 0. Clearly, the shape corresponding to a vanishingly small RE is an "infinitely

thin" plate. When RE = 1. 0 the edge area Ae is equal to the face area Af as follows

from Eq 9. A well-known example of such a regular solid is the cube. The square bar

is another example of special symmetry in which RE = 1.0 provided the tumbling axis

PW is parallel to the longer dimension, as in the diagram.

Numerous examples of polygonal plates could be given, in which the effective edge

area is equal to the face area. Note, however, that Eq 24 applies to any flat plate, no

15



matter what value of RE corresponds to it, and the plate does not need to be polygonal. A

"flat" plate, by definition, has at least two equal and parallel face areas.

In Eq 24 the minimum value of krl/kf 1 , namely 0. 785, is reached when RE = 1.0,

because no larger value of RE can occur for any type of fragment. If one considered a
"mathematical" value of RI greater than 1. 0, it is evident that it would correspond

physically to a shape with (R%)-1 = RE in which (R%)- l is less than 1. 0. An "edge-area"

greater than a "face-area" has no meaning in terms of the thickness factor RE; ie, the

edge-area must always be less than the face-area, by definition.

Some things should be said concerning the most probable values for RE in an actual

.explosion, in which fragments are produced by rupturing a metal case. On general

principles, one can be sure that the maximum dimension of any fragment will be less

than the radius of the container surrounding the explosive charge, for such devices as

bombs or depth charges. Of course, when an explosive charge is not "closely" contained

or when large asymmetries exist, the fragments may be larger. The largest shrapnel

fragment from a "closely-cased" bomb will, therefore, have a face area and an edge

area which correspond to an RE value, from Eq 9, considerably greater than zero. The

most probable value of RE is a statistical quantity that can only be found by observing a

large number of fragments from many bomb explosions involving the same type of con-

tainer. The "median" of RE is 0. 50, which is half way between the extreme values; but

this is not necessarily the most probable value of RE. This could be true only if all values

of RE were symmetrically distributed on both sides of the 0. 5 value. As a rough esti-

mate, until further information is available, one may take RE = 0. 25 as a "probable min-

imum". This corresponds to a realistic "probable maximum" range, since the R E term

appears in the denominator of the right side of Eq 24 from which the corrected character-

istic distance k-1 is reckoned.
r

The maximum-range curves plotted in Fig. 4 cover (by interpolation) all the pos-

sible magnitudes of RE from zero to 1. 0. Therefore, these range curves are universal,

and can be used to make more accurate range predictions whenever there is more infor-

mation available concerning most probable RE values that correspond to actual fragments

from various types of explosions.

Maximum Missile Ranges

The procedure for calculating the maximum range of a projectile can be developed
simply from the characteristic-distance Eq 3 in conjunction with the rotation correction

factor just derived in Eq 24. Taking average values along the trajectory (subscript a)

the corrected characteristic distance is determined from Eq 24.
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-A (1 +RE) ,5
(kr a (1. 5 7 ) kf -R (25)

in which (ki') is the corrected value of (k;l) due to (tumbling) rotation, and kflr-a a ]a
is defined by an equation similar to Eq 3, but with A replaced by Af. See Eqs 12, 18, and

19 above.

*(k f )a = (0.167)(s f)1) (P (26)a (26)

(nontumbling fragment)

Equation 26 is identical to Eq 3 except that s a is replaced by sf* The quantity sf is

defined as the fragment (flat-plate) volume divided by the face area A Thus sf is the same

as the quantity sa with A replaced by Af. Therefore, sf is constant and is practically equal
to the case thickness s (measured in inches), unless the fragment is bent or curled. Bent

or curled fragments are considered in the next section. Equation 26 gives the value of k - 1

from Eq A-109 averaged along the trajectory, which results in Eq 3 with subscript a, and

also with the variable projected area A replaced by the constant face area A Hence the

subscript f appears in Eq 26 which refers to a nontumbling fragment.

Substituting the expression for (kf;) from Eq 26 into Eq 25 we obtain the character-

istic distance (krl) for a rotating (tumbling) projectile

K= (0. 262)(sf)(CD)a(Ip/pa)(l + RE) -  (27)

K = (kl) 
(28)

by definition.

The general method for calculating a typical maximum horizontal range distance

(xR) is illustrated in Tables I and II. The various steps in the calculation proceed from

column to column in each table according to the following schedule.

17



Step

No. Calculation steps

1 K Characteristic distance, feet, from Eq 27 above

2 r From Eq A-68 with k a replaced by (k r ) a for a

rotating fragment. From Eq 28 we obtain (kr)a

= K . Therefore,

r = K_1 (V2/

3 B From Fig. 3, using r from Step 2m

4 Q From Eq A-90 with N r0 since r > 40 for frag-r

ments. Thus:

Q cos B m

5 w From EqA-21, withk-1 replaced by k for

a rotating fragment. From Eq 28, (kr)a = K.

Therefore,

w = KQ

6 F From Eq A-103, with Nr  0. Thus, F = 2r sin BI

7 (zR) From Fig. 1.

8 (xR) Maximum horizontal range, feet, from A-50.

Thus,

(xR) = (0. 5)w(zR)

Definitions of all symbols involved in the above steps are given in the Appendix in

connection with the equations located there.

In order to carry out all the steps it is necessary to know the magnitudes of the fol-

lowing quantities:

s Fragment volumef Face area = Effective fragment thickness (inches)

(CD) a  Drag coefficient, averaged along the trajectory (dimensionless)

Pp Projectile density (gm/cm 3, numerically equal to the specific
gravity relative to water

Pa Air density (gm/cm 3), averaged along the trajectory
Edge area

RE Dimensionless shape factor, Face area

18



VB Initial speed of fragment (ft/sec)

g Acceleration due to gravity, 32 ft/sec

Values assumed for these quantities are as follows:

VB 10, 000 ft/sec

(CD)a  1. 0

RE Assigned 0. 0, 0.25, 0.50, 0. 75, and 1. 0

pp 2. 7 for aluminum, or 7. 8 for steel

s f Assigned values from 0.5 to 10.0 inches

P (773)(p/p) +deg. C (29)p-l= ~ (73(op1 273

in which

-1 Air specific volume, cm /gm, at a barometric pressure of
p inches of mercury (for dry air)

Po = 29. 92 inches of mercury

For use in the Coyote Canyontest field (Sandia facility), the specific volume (Eq 29)

should be evaluated at a barometric pressure which corresponds to the average altitude

of a shrapnel fragment trajectory. This average altitude is taken to be 7500 feet above

sea level, at which the barometric pressure p is about 22. 65 inches of mercury, accord-
3

ing to the NACA Standard Atmosphere. The maximum temperature is arbitrarily as-

sumed to be 30 C (in the summer). With these values Eq 29 gives the air specific

volume P 1 averaged along the trajectory,
a

P-1 = (1.13)(10 3)cm 3/gm
a

By Eq 27, the characteristic distance K is directly proportional to P a and there
fore K is directly proportional to the absolute air temperature by Eq 29. In order to be

on the safe side in estimating missile ranges, one should choose an air temperature which

is as high as ever expected to occur at 7500 feet altitude. This has been assumed as 300C

(86°F). There is also a range of possible barometric pressures, but this small percentage

From Ref 3, page 2001.
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variation has been neglected in deriving the value p- = (1. 13)(103) cm3/gm as the specific

volume of air to be used in fragment range calculations.

TABLE I

Initial angle for maximum range of aluminum fragments
moving at 10, 000 ft/sec, assuming: The shape factor

RE = 0.25, Air specific volume p- 1 = 1.13(103) cm 3 /gm, and C D = 1.0
E Pa D=

Effective Angle for
fragment Characteristic Air maximum
thickness distance resistance range Q

sf K r B cos B

(in) (ft) (g's) (deg.) (dimensionless)

0.5 320 9740 17.5 0.95
1.0 640 4870 18.0 0. 95
1.5 960 3250 18.2 0.95
2.0 1280 2440 18.5 0.95
3.0 1920 1620 19.0 0.95
4.0 2560 1220 19.3 0.94
5.0 3200 975 19.7 0.94
6.0 3840 812 20.0 0.94
7.0 4480 695 20.1 0.94
8.0 5120 610 20.2 0.94

10.0 6400 487 20. 5 0.94

TABLE II

Maximum range of aluminum fragments moving at 10, 000 ft/sec

RE = 0.25, P-1 = (1.13)(10 3) cm /gm, CD = 1.0

Effective Maximum
fragment Relaxation Acceleration Distance horizontal
thickness distance ratio ratio range

sf w F zR xR

(in) (ft) (dimensionless) (dimensionless) (ft)

0.5 304 5820 11.1 1,690
1. 0 608 3020 10.3 3,140
1.5 910 2020 9.9 4,500
2. 0 1220 1550 9.6 5,850
3. 0 1820 1050 9.2 8,350
4.0 2400 805 8.9 10,700
5. 0 3000 660 8.7 13,100
6.0 3600 552 8.5 15,300
7. 0 4200 480 8.3 17,400
8. 0 48010 427 8.2 19,700

10. 0 6000 340 8.0 24, 000

20



Ranges of Irregular Fragments

The results of Table II and of similar calculations are plotted as curves in Fig. 4

for aluminum and steel fragments. The maximum ranges are given in terms of the fun-

damental parameter sf the "effective" fragment thickness, measured in inches. Each

curve corresponds to a fragment of a certain shape as indicated by a fixed value of the

shape factor R E. A relatively thin flat fragment corresponds to R E '- 0. A cube corre-

sponds to RE = 1. 0, and intermediate shapes have intermediate R E magnitudes.

It must be emphasized that the "effective" thickness sP, used in Fig. 4, is not in

general equal to the container thickness S unless the fragment is approximately a flat

plate.

When the fragment consists of a bent, curled, or folded plate, the previous defini-

tions must be extended in order to estimate the corresponding range distances. The ef-

fective fragment thickness s f has been defined previously as

s f =V f/A f (30)
where
where

sf= Effective thickness (inches)

V f =Fragment volume. (in3)

A f = Face area (in 2)

For a flat plate, the face area A fis unambiguous, but the "face area" A f o et uld

or folded plate is as yet undefined,' and has no meaning. In order to extend the definition,

we refer to Eq 7, which gives the frontal projected area A in terms of the two areas Ae
and A fFrom Eq 7, it is clear that the "deaa"A eis the minimum frontal projected

area, and this minimum occurs when the inclination angle H is equal to 90 degrees. This

conclusion applies as yet only to a flat plate. By analogy, let us define A eas the mini-

mum frontal projected area of a bent, curled, or folded plate, and let us choose the angle

H so that H is 90 degrees when the bent, curled, or folded plate presents its minimum

frontal projected area. Then, in order to preserve the form of Eq 7, we define A fas the

frontal projected area of the bent, curled, or folded plate when the inclination angle H is

zero. Obviously this occurs when the fragment has turned 90 degrees from the position

where it presented its minimum frontal projected area, defined as A e. It follows from this

extended definition that the generalized "face area" A f is always approximately equal to the

maximum frontal projected area of the fragment.

Using the extended definitions of A eand Af derived above, we can calculate the

values of s f and R Efor a bent, curled, or folded fragment, using Eqs 30 and 9, respec-

tively. The ranges are then obtained from Fig. 4 using the values of s fand R E so obtained.
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Results and Discussion

It is of interest to compare the range predictions of the present report with the

ranges predicted by the cube root formula

Range in feet = (600)(charge wt. )1/3 (31)

where charge wt = pounds of TNT equivalent. A missile from a 250 -pound TNT equivalent

explosive charge was observed to land at 5500 feet. According to the cube root, Eq 31,

the corresponding explosive charge should have been at least 780 pounds.

The missile in question consists of a 3/8-inch steel plate folded so that the actual

face area Af is only about (0. 55) times the "unfolded" flat plate face area, which we desig-

nate as A'. The effective thickness sf is derived from Eq 30 by substituting the relation

Af = (0. 55)AI (32)

Eliminating Af from Eq 30 by using Eq 32,

sf = (0. 55)I Vf(Af )- = (0. 55)-IS (33)

But Vf(Afl)- I is simply equal to the "flat plate" thickness designated as S in Eq 33 above.

This is also the container thickness. Since S is equal to 3/8 inch in the present instance,

we obtain the effective fragment thickness,

sf = (0. 55)- (3/8) = 0.68 inch (34)

The fragment has a shape corresponding to an RE value of about 0.25. Using RE = 0.25

and s f = 0. 68 inch, from Eq 34, the predicted maximum range is obtained as 5750 feet,

by using Fig. 4.

This prediction assumes a maximum initial fragment speed of 10, 000 ft/sec, which

would always be nearly reached when the explosive charge weight is greater than the case

weight.

Note that the explosive charge weight does not appear in Fig. 4. Also it should be

pointed out that the curves in Fig. 4 refer to the range of a projectile which starts off at

the optimum initial angle with respect to the horizontal direction, at which the maximum

possible range occurs for a given initial velocity. It will now be shown that the explosive

charge weight has an appreciable effect on the maximum horizontal range only when the
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charge weight is much smaller than the case weight. The formula given in Ref 1 for TNT

charges is
1

initial missile velocity ft/sec = (6940)(0. 5 + R) 2  (35)

in which

R -Case 
weight

Charge weight (TNT)

Note that the Gurney energy-density constant (2E)1/2 is 6940 ft/sec for TNT. As an ex-

ample, let us assume that the charge weight is equal to the case weight. Then by defini-

tion

R= 1.0

and the corresponding initial missile velocity from Eq 35 is 5670 ft/sec. In order to see

what effect this would have on the maximum range we refer to the eight steps of the calcu-

lation schedule preceding Table I. The figures to be used in Step 1, Eq 27, are

sf 0. 68 inch, effective fragment thickness

(CD a 1. 0, drag coefficient

Pp P 7. 8, density of steel

PaI  1. 13 (10 3) cm 3/gm, specific volume of air at 7500 ft

RE  0. 25, shape factor

VB 10, 000 ft/sec, and also

VB 5670 ft/sec

The above values refer to the actual fragment which landed at a distance of 5500 feet.

These values also refer to the graph (RE = 0. 25) in Fig. 4 for a steel fragment mov-

ing initially at 10, 000 feet per second. Thus the list of eight steps below serves a double

purpose. First, it shows how the maximum horizontal range of a projectile is affected

by a change in the initial speed. Second, it shows the derivation of a graph in Fig. 4

which is not included in Table I or II.

2
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The eight steps in the calculation of each initial speed are:

VB = 10,000 VB = 5670

K 1260 ft 1260 ft

r 2480 797

Bm  18.5 degrees 20.0 degrees

Q 0.94 0.94

w 1185 ft 1185 ft

F 1570 545

zR 9.65 8.5

xR 5720 ft 5040 ft

When the weight of the explosive is equal to the case weight, we see that the 43 per-

cent reduction in initial speed VB changes the horizontal range from 5720 to 5040 feet

which is only a 12-percent reduction from the limiting value for large charge weights. The

corresponding change in optimum direction angle Bm is from 18.5 degrees to 20 degrees,

which is only an 8-percent increase. These results directly indicate that a negligible

reduction in the missile range occurs even when the explosive charge weight is as small

as the case weight. If the charge weight is much less than the case weight, one should

carry out additional calculations similar to those just given in order to make a significant

downward revision of the safe missile ranges given in Fig. 4, which are the limit values

approached when the explosive charges are very large.

Although the maximum ranges in Fig. 4 were necessarily determined only for the

optimum initial direction angle (B = B ) for each projectile, it can be shown that the

corresponding ranges for other direction angles are not appreciably reduced unless the

direction angles in question are much less or much greater than the optimum for each

fragment. Thus there is a large solid angle surrounding the explosion, through which

many fragments will travel out to large distances, nearly as great as the maximum ranges

which are given in Fig. 4.

To prove this statement, we calculate the range corresponding to

VB = 0, 000 ft/sec

and

B = 5 degrees

for the same shrapnel fragment as before. The eight steps of this calculation are the same

as the eight steps of the preceding calculation (in the VB  10, 000 column), except that
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B m= 18. 5 degrees is replaced by B = 5 degrees. Thus we obtain in this instance

K 1260 ft r 2480

B 5 degrees Q 0. 996

w 1255 ft F 433

Z R 82x R 5150 ft

We see that the range 5150 feet when B =5 degrees is a reduction of 10 percent from the
range 5720 feet corresponding to the optimum direction angle B =18.5 degrees. This

is nearly the same as the 12-percent reduction already calculated for the reduced initial

speed 5670 ft/sec. This shows that missiles can leave the explosion at any angle between

5 and 18. 5 degrees and still travel nearly all the way out to the distance 5720 feet cor-

responding to 18. 5 degrees. (The distance 5720 feet is also the one given in Fig. 4.)

A further calculation shows that the direction angle B can be considerably greater

than 18. 5 degrees (for the fragment under consideration) before the range drops by as

much as 10 percent, and it is evident that similar calculations may be made for all the

ranges indicated by the graphs in Fig. 4.

Finally, it may be of some interest to show to what extent the cube root range, Eq 31,

is supported by the theory derived in this report. First of all,' if the case weight is always

the same proportion of the explosive charge weight, a geometric analysis (based on con-

stant density) shows that the case thickness must vary as the cube root of the charge weight.

The cube root formula, Eq 31, would then be valid, provided the range were simply pro-

portional to the case thickness S. When the curves of Fig. 4 are plotted on ordinary

graph paper instead of on logarithmic graph paper it is found that the relation between the
"leffective" fragment. thickness s f and the range is almost a straight line. If the plot in

each case were exactly a straight line, the trend of the cube root law Eq 31 would be ex-

actly confirmed (at least for high-speed fragments). It is evident that in general the case

weight is not always the same fraction of the charge weight. Therefore, Eq 31 can not be

correct for all types of explosions, because a different multiplying factor would be re-

quired for each different ratio R of the case weight to the explosive charge weight, even

neglecting the effect of folding or curling of the fragments (which results in fragments

which have effective thicknesses different from the case thickness).

Conclusions

1. When the explosive charge weight is greater than the case weight, the max-

imum horizontal range is obtained from Fig. 4. This range depends only on the

assumed size and shape of a fragment.

25



2. When the explosive charge weight is much less than the case weight, the

range of a fragment is significantly less than that shown in Fig. 4 and depends on

the charge weight as well as on the fragment geometry. The method of calcula-

tion is explained in the report.

3. Since cube root scaling is relatively correct, approximate distances

(neglecting exact fragment geometry), can be found by using the cube roots of

the different charge weights (pounds), with a single constant multiplying factor

of 600 feet. More accurate distances must be obtained from a set of different

multiplying factors. These multiplying factors can be found only by using the

methods summarized in conclusions 1 and 2 above, supplemented by actual ex-

perience with various types of explosions.
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APPENDIX

DERIVATION OF GENERAL TRAJECTORY FORMULAS

Differential Equations

The motion of a projectile in air is retarded by a drag force fD which is proportional

to the square of the projectile velocity V at any point along its path:

f = (0. 5)CDA P V2  (A- i)
D D a

by definition, with

fD Drag force (dynes)

CD Drag coefficient (dimensionless)

A Frontal projected area (cm 2

Pa Density of air (gm/cm 3 )

V Projectile velocity (cm/sec)

The drag force fD results in a deceleration vector aD for the projectile, directed

180 degrees relative to its velocity vector, as shown in Diagrams 1 and 2 below. The

magnitude of the deceleration vector is determined by Newton's second law. Hence,

-i

aD = m fD (A-2)

m Mass of projectile (grams)

aD Deceleration of projectile due to drag (cm/sec 2

fD Drag force (dynes)
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The direction of the velocity vector V is at an angle b with respect to the horizontal

direction. The direction of the deceleration vector aD is at an angle

Diagram 1 Diagram 2
(velocity) (deceleration)

i
VX

vx

of 180 + b with respect to the (forward) horizontal direction, as indicated in Diagram 2.

Substituting the expression for fD from Eq A-1 into Eq A-2 gives

aD = kV 2  (A- 3)

with

k = (0. 5) PaCD(A/m) (A-4)

by definition,

where the symbols have already been defined following Eqs A-1 and A-2.

The physical meaning of the quantity k is made clear by expressing the drag decelera-

tion aD in terms of the distance S along the path of the projectile. Let dS be the element of

length along the path. The drag acceleration (-aD) is identically equal to

-aD = dV/dt = (dV/dS)(dS/dt) = VdV/dS

Therefore, we may rewrite A-3 by substituting for aD

-V(dV/dS) = kV2
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After dividing by V 2 this becomes

_dV/V = k (A-3')
dS

Equation A-3' shows that k is simply equal to the relative fractional loss of velocity per

unit distance along the trajectory, due to the influence of air resistance.

The deceleration aD of the projectile always acts in a direction opposite to its ve-

locity, as shown in Diagrams 1 and 2, whereas the acceleration g due to gravity always

acts in the same downward direction at every point along the projectile path. The angle

b in Diagrams 1 and 2 is in general different for each point along the projectile path,

since the direction of the velocity vector is continually changing. Thus it is necessary to

resolve the drag deceleration aD into horizontal and vertical components, namely, ax

and a as indicated in Diagram 2. In terms of the angle b these components may be ex-Y
pressed as

ax  aD cos b = kV 2 cos b (A-5)

2
ay aD sin b = kV sin b (A-6)

in which aD has the magnitude given by Eq A-3. The total resultant projectile acceleration

components due to the combined effect of gravity and drag are therefore

dVx/dt = -kV 2 cos b (A-7)

dV /dt = -g -kV 2 sin b (A-8)

in which the horizontal and vertical components V and V of the velocity vector V are asx y
indicated by Diagram 1. In terms of the rectangular coordinates of the projectile, x and

y, and the time t

V = dx/dt (A-9)

V = dy/dt (A-10)

by definition.

In Eqs A-7 and A-8 the projectile acceleration components dVx/dt and dV y/dt are

both negative, because the projectile velocity is decreasing as the time t is increasing.
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From Eqs A-9 and A-10 and the definition of the tangent of b in Diagram 1

Vy/V x = tan b = dy/dx (A-1i)

From Diagram 1 and the definitions of the sine and cosine

cos b = v/V (A-12)

sin b = V y/V (A-13)

Dividing Eq A-8 by Eq A-7 gives

dV y/dVx = tan b + g(kV ) (sec b) (A-14)

Introducing a new variable, let

u = tan b (A-15)

by definition.

Then from Eq A- 11

V = uV (A- 16)y x

Differentiating Eq A-16 with respect to Vx results in

dVy/dV x = u + Vx(du/dVx ) (A- 17)

Substituting the value of dV y/dVx from Eq A-17 into Eq A-14 and noting that u tan b

as defined in Eq A-15 we obtain

Vx(du/dVx) g(kV2) - I (sec b) (A-18)

From Eq A-12

V = Vx(sec b) (A-19)

Substituting the value of V from Eq A-19 into Eq A-18 and dividing by Vx gives

du/dVx = gVx3[(k-l)(cos b)] (A-20)
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If we define Q = average value of (cos b) = (cos b)

= average, value of k-1 (cos b) = (k a (cos b)a

w = (k-I)aQ = (k-) a(cos b) a  (A-21)

in which w is the average value of k (cos b) along a short arc of the trajectory. Then

one can integrate Eq A-20 along this short arc for which k - (cos b) is nearly constant.

Integrating A-20, using A-21, gives

u =u B + (0. 5)gw (V 1 2 _ V x2) (A-22)

where u B is the initial value u and V1 is the initial value of Vx at the beginning of the short

arc of the trajectory. From Eqs A-21 and A-4

w = 2( PaCD)a 1 (m/A)Q (A-23)

in which average values of C and P along the short arc must be used, as well as Q which
D a

is the average value of (cos b). Let the initial value of b at the beginning of the short arc

of the trajectory be defined as B. Then from Eqs A-15 and A-12

uB= tan B (A-24)

V 1 = VB cos B (A-25)

in which VB is the initial value of V at the beginning of the arc. In other words, VB

is the initial magnitude of the velocity vector. Thus all the quantities have been defined,

that appear in Eq A-22. From Eqs A-15 and A-11 it follows that in Eq A-22

u = dy/dx = slope of trajectory (A-26)

where x and y are the rectangular coordinates of the projectile at any point along its path,

relative to the starting point. In order to carry out the integration of Eq A-22 to determine

the shape of the projectile path in terms of the rectangular coordinates x and y, it is nec-

essary to evaluate the unknown horizontal velocity component V which appears in Eq A-22.x

To determine V it is evident that Eq A-7 must be integrated. To do this we notex
that

dVx/dt = (dVx/dx) (dx/dt), identically. (A-27)

35



But from Eq A-9 this can be written as

dVx/dt = Vx(dVx/dx) (A-28)

Substituting the expression for dVx/dt from Eq A-28 and the expression for V from A-19,

the acceleration formula, Eq A-7, is modified so that only the unknown quantities x and Vx

are present.

dVx/dx = -k(sec b)V x  (A-29)

In obtaining Eq A-29, we have divided both sides of the intermediate equation by V (which
X

may be done legitimately, since Vx is never equal to zero). Equation A-29 may be rear-

ranged to give

dV x _ dx (A-30)
Vx k- 1(cos b)

Over a short section of trajectory for which k- (cos b) is nearly constant, we use the aver-

age value defined by Eq A-21, and Eq A-30 becomes

dV x/V x = -dx/w (A-31)

in which the explicit representation of w is given by Eq A-23. Integrating Eq A-31 we ob-

tain

loge(Vx/V 1 ) = -x/w

in which Vx = V 1 when x = 0 at the beginning point of the trajectory, as defined by Eq A-25.

Solving for Vx gives

Vx/Vi = exp (-x/w) (A-32)

in which exp is the exponential function to the base e.

In Eq A-32 all the symbols have been defined previously. In particular, the expres-

sion for w is given by Eq A-23. From Eq A-32 it is evident that w is the horizontal dis-

tance x at which the horizontal velocity component V x has fallen to 1/e of its initial magni-

tude. Note that exp (-1) = 1/e = 1/2. 72 = 0. 368, because of the properties of the exponen-

tial function. Thus w may be called the "relaxation distance".

The time of flight t is found from substituting the expression for V from A-9 into A-32
x x

and taking the reciprocal. This gives

dx/dt = V 1 exp (-x/w) (A-33)
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dt/dx = V 1 exp (x/w) (A- 34)

Integrating Eq A-34 between limits t = 0 when x = 0 to t = t at a horizontal distancex
x along the trajectory measured from the beginning the time of flight t x is

t x = (W/V )(-1 + exp x/w) (A-35)

in which t x is in seconds if w is in feet and V 1 is in feet per second.

In order to find the vertical height y Eq A-22 must be integrated. Substituting the

expression for u from Eq A-26, the expression for V from Eq A-32, and the expression
x

for uB from Eq A-24, Eq A-22 can be written as

dy/dx = 1 - F-l[-1 + exp (2x/w)] (A-36)
tan B

in which, by definition,

F = 2(wg)- 1 V2(tan B) (A-37)F1

and V1 is given by Eq A-25.

Substituting the expression for V 1 from Eq A-25 into Eq A-37, and observing that

2 sin B cos B= sin 2B

from trigonometry, Eq A-37 becomes

F (g-1 2
F= (wg) V2sin 2B (A-38)

in which V B is the initial magnitude of the projectile velocity, at the beginning of its path.

Integrating Eq A-36 with the initial condition y = 0 when x = 0 at the beginning of the

trajectory, we find

y/x = (tan B)(I - F-1Ex )  (A-39)

in which, by definition,

E x = -1 + (2x/w) [-1 + exp (2x/w)] (A-40)

The horizontal distance of any point along the trajectory is x, measured from the

starting point. The "relaxation distance" is w which is given by Eq A-23. The dimension-

less distance ratios x/w and 2x/w appear in Eqs A-40, A-36, A-35, and A-32. For this

reason it is convenient to define a new symbol z to represent one of these dimensionless
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distance ratios. Let

z = 2x/w (A-41)

by definition. Then the fundamental trajectory formulas, Eqs A-40, A-36, A-35, and A-32

can all be expressed in a simplified form in terms of this new dimensionless distance ratio,

Z.

Using A-41, the definition of E in Eq A-40 becomesX

E = -1 + z-1(-1 + exp z) (A-42)x

Substituting the expression for E x from Eq A-42 into Eq A-39, we find the equation

of the trajectory in rectangular coordinates x and y

y/ x -1 - l F1
tan B = - F-I- 1 + z-(-1 + exp z)j (A-43)

in which z is defined by Eq A-41 in terms of the horizontal distance x and the relaxation

distance w. The relaxation distance w is given by Eq A-23. Using EqA-41, the slope formula

Eq A-36 can be written as

tan b - Vy/Vx -l

tan B tanB =1-F +expz) (A-44)

in which we have used the various equivalent slope representations

tan b = dy/dx = V /V x

from Eq A-11. (Note that b is the angle of the velocity vector.)

In order to illustrate the use of these formulas, let us find the altitude of the highest

point of the trajectory. This is found from the equation of the trajectory, A-43, which gives

the altitude y in terms of the horizontal distance x. The horizontal distance x correspond-

ing to the highest point of the trajectory is found from Eq A-44 which gives the slope of

the trajectory, tan b, at any point. At the highest point of the trajectory the projectile is

moving horizontally, and the velocity vector angle b is zero (relative to the horizontal di-

rection). Thus tan b = 0 and Eq A-44 then requires that

F = -1 + exp zm (A-45)
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in which zm represents the particular value of z corresponding to the distance x at which

the highest point of the trajectory occurs. Thus from Eq A-41, solving for x gives the

horizontal distance xm at which the highest point is located:

x = (0. 5)wz (A-46)

The value of z must be determined from Eq A-45 by solving for zm , which gives

z m = loge(1 + F) (A-47)

in which F is defined by Eq A-38. Having determined xm and z we substitute these

values into Eq A-43 to determine the maximum trajectory altitude Ym

1= x(tan B) -F[-l + z 1 (-l + exp z)]} (A-48)

Horizontal Range

It is frequently required to determine the horizontal range xR for a trajectory, as

well as the maximum altitude ym" The range xR is defined as the distance x in Eq A-43

at which the relative vertical altitude y is equal to zero. Since x is never zero except at

the beginning of the trajectory, this condition applied to Eq A-43 requires that the square

bracket must be equal to F. Thus,

F = 1+ z- (-I + exp z )  (A-49)

in which zR represents the particular value of z corresponding to the range distance xR

in Eq A-41. Thus in this case we solve Eq A-41 for x and substitute xR

xR = (0. 5)wz R  (A-50)

Note that z R is the solution of Eq A-49 above, and xR is the horizontal range.

It is impossible to solve Eq A-49 explicitly for zR in terms of F using elementary

functions, unless an infinite series is used. For specific numerical solutions, one must

use trial and error, Newton's method of approximation, or some graphical method. A

graphical method is illustrated in Fig. 2 in which F is plotted in terms of z R when z R

does not exceed 3. 0. When zR is greater than 2 the rapid change of exp z R makes it de-

sirable to use logarithms. Taking the logarithm of each side of Eq A-49, after adding 1

to each side of the equation, gives
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log, 0 (W + 1) = log, o[Z R'(-1 + exp z R)] (-1

In Fig. 1 various values of log,1 0 (F + 1) have been plotted as a curve, in terms of the

quantity zR according to Eq A-51. Note that log1 0 (F + 1) = 0 when z = 0. From Fig. 1
R 10 R

it is possible to determine z R from any given F over a wide range. When z R is less than

2 it is preferable to use Fig. 2 instead of Fig. 1 because of the greater percentage accu-

racy with which z R can be read on the scale of the graph. The range of F covered in Fig. 1

is expected to cover all cases occurring in practice, because the largest F in Fig. 1 cor-

responds to an initial air resistance r of about one million times gravity. (See Eq A-103

in which N ris small compared to 1. 0. )

For values of z R greater than 4. 0, the right side of Eq A-49 can be represented to

a very close approximation by the more simple function

-1
Z R exP zR

Therefore,

F w - x (A-5 .2)
R ex R

when z R is greater than 4. 0.

If the relaxation distance w given by Eq A-23 is nearly constant along a section of a

trajectory, the conditions at the end of the section can be calculated with adequate accuracy

from the conditions at the beginning of the section.

This follows because the value of k-1(cos b) at any point along the section is never

very far from the average value of k- (cos b) defined as w in Eqs A-21 and A-23. In

general, the total trajectory must be divided into sections over which the drag coefficient

CD inerly constant, because the drag coefficient variation is usually the major cause
of change in k-1(cos b). For high-angle trajectories the variation of (cos b) must also be

taken into account, since b varies over a wider range for different points along the trajec-

tory. The air density pa also varies along a trajectory section, and this variation must be

included in the accurate calculation of any projectile path which rises vertically more than

about 3300 feet above the starting point. An altitude change of 3300 feet (1. 0 kilometer)

results in an air density change of about 10 percent, according to the NACA standard

atmosphere, quoted in Ref 3, page 3130.

If an average air density is used in the calculation, the air density at any point would

always be within +5 percent of the average density for any trajectory which rises less than

3300 feet above the starting point.
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Initial Angle for Maximum Range

Assuming sufficiently constant conditions over the entire trajectory, one can deter-

mine approximately the initial angle Bm at which the maximum range (XR)m ax occurs in

Eq A-50. In a vacuum the maximum range occurs when the initial angle B is 45 degrees.

Thus,

(Bm)va c = 45 degrees

The air resistance changes this, and (B m ) is no longer 45 degrees. To calculate the mag-

nitude of the initial angle (Bim ) which results in the maximum horizontal range, the pro-

cedure is to differentiate the range xR with respect to B and set the result equal to zero.

Thus,

(dxR/dB) = 0 (A-53)

when

B--B
m

Substituting the expression for xR from Eq A-50 into Eq A-53

zR1 (dzR/dB) = - - (dw/dB) (A-54)

when

B= B
m

Note that w is obtained from Eq A-21 and Eq A-4. Thus,

w = Qka1  (A-55)

Also,

ka = 2 (Pa CD)a (m/A) (A-56)

from Eq A-4, and

Q = (cos b)a (A-57)

by definition from Eq A-21.

Differentiating Eq A-52 with respect to B gives

F- (dF/dB) = (zR - l)zR (dzR/dB) (A-58)
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in which zR must always be greater than 4. 0.

Differentiating Eq A-38 with respect to B gives:

dF/dB =(wg) -1 V 2 [2(cos 2B)-w 1 (sin 2B)(dw/dB] (A-59)
BI

Differentiating Eq A-55 with respect to B gives

dw/dB = ka (dQ/dB) (A- 60)a

From Eqs A-60 and A-55

w I(dw/dB) = Q I(dQ/dB) (A-61)

Dividing Eq A-59 by Eq A-38 gives

F- (dF/dB) = 2(ctn 2B) - w- (dw/dB) (A-62)

Substituting the expression for F 1 (dF/dB) from Eq A-62 into Eq A-58 we obtain:

zR(dzldB) = 2ctn 2B - w (dw/ dB) (A-63)

RR' zR I

Substitutingthe expressionfor zR1(dz/dB) from Eq A-63 into Eq A-54 and solvingfor zR

Z R =2 - 2i1w -1(dw/dB)tan 2B]l (A- 64)

Substituting the expression for w- (dw/dB) from Eq A-61 into Eq A-64 gives, for zR

greater than 4. 0,

(0. 5 )z R = 1 - [Q-l(dQ/dB)tan 2B] - 1  (A-65)

Since the relation between Q and B is unknown at present, it is not possible to pro-

ceed further with the solution of Eq A-65 until an analysis of Q has been carried out. Then

the initial angle B for maximum range can be found from the fundamental equation, Eq A-65,

for any given magnitude of zR.

Asymmetric Trajectories

The derivation of Eq A-65 is based on the asymptotic formula, Eq A-52, which gives the

approximate relation between F and zR for all zR which are greater than 4. 0. It will be

proved that the air resistance r, compared to the acceleration of gravity, is proportional
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to F. Also, zR depends on log 0 (F + 1) according to the curve in Fig. 1, which shows

that a very large value for F results from a small value for zR* When zR is greater than

7. 0 the air resistance is, therefore, quite large compared to gravity.

Just how large this air resistance can become should be investigated, because it

turns out that the shape of the trajectory approaches a limiting form when this resistance

is large. From this limiting trajectory shape it is possible to estimate the dependence of

Q relative to the initial trajectory angle B. From this relation of Q with respect to B it

is possible to determine Q-1 (dQ/dB) which can be substituted into the fundamental formula,

Eq A-65. Finally, the determination of the initial angle B for maximum range can be de-

termined from Eq A-65 after Q- (dQ/dB) has been obtained.

Let the dimensionless ratio of the "initial" air resistance deceleration a' to the ac-

celeration g due to gravity be defined as r. Then,

r = a'/g (A-66)

From Eq A-3, using the initial velocity VB and the average value of k along the trajectory

(which is defined as k a),

a' = kaV2 = "initial" deceleration* (A-67)
D aB

From Eq A-67, substituting a' into Eq A-66

-1 k V2
r = g 1 k (A-68)

a B

The relaxation distance w also depends on k according to Eq A-55a

which may be solved for k a

k = w -Q (A-69)a

Substituting ka from Eq A-69 into Eq A-68

(wg) -VQ (A-70)

As shown by Eq A-67, the "initial" deceleration ab is not really the exact initial de-
celeration, because ka is not exactly equal to k. Use of ka in place of k is required for
mathematical convenience in order to make a simple derivation of Eq A-71, a relation of
fundamental significance.
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Dividing Eq A-70 by Eq A-38 gives:

r = FQ(sin 2B) 1  (A-71)

Equation A-71 shows that r is proportional to F as was stated previously. The factor
-1

of proportionality is Q (sin 2B) - . This depends on the unknown quantity Q which is the

average value of (cos b) along the trajectory. Evidently this quantity Q can not be closely

estimated unless something is known in detail about the trajectory. All that can be stated

with certainty in general is that

0 < Q < 1. 0 (A-72)

because (cos b) is always in a range

0 < cos b < 1. 0 (A-73)

The range given by Eq A-73 follows from the trigonometric formula cos b = cos (-b),

since

-90 ° < b < 900 (A-74)

for any trajectory if the effect of windage is neglected.

In order to determine Q to within closer limits than those given by Eq A-72 we shall

calculate a typically asymmetric shrapnel trajectory which starts off at an angle B equal

to 20 degrees. It will be proved later that this angle is somewhere near the angle which

gives the maximum horizontal range. From Table II, already calculated, it can be seen

that a typical aluminum fragment, less than 1. 5 inches thick, has a value of zR equal to

10 or more. A value of

zR = 11.0 (A-75)

will be assumed in the calculation of the "representative" trajectory with B = 20 degrees.

By referring to Eq A-49, it is found that the magnitude of F corresponding to zR = 11.0

is

F = 5500 (A-76)

In order to determine r from Eq A-71 it is necessary to determine sin 2B as well as F.

It has been assumed that B = 20 degrees for the particular trajectory under consider-

ation. Therefore,

sin 2B sin 400 = 0.64 (A-77)
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It will be proved later that the average value of (cos b) is nearly equal to cos B. Hence,

as a first approximation, we set

Q20 = cos 200 = 0.94 (A-78)

By using the magnitudes of F and Q and sin 2B just determined, the air resistance r

is found from Eq A-71 to be equal to 8000. This means that the projectile is initially sub-

jected to a decelerating force which is 8000 times as large as the force due to gravity. It

is expected, therefore, that the shape of the trajectory for this large air resistance might

be considerably different from the perfectly symmetric trajectory in a vacuum, or the

nearly symmetric shape when r is only a few times the gravity acceleration.

The most important quantities required to establish the general shape of a trajectory

are:

Range xR

Maximum height Ym

Horizontal location of the x
maximum height m

Angle of impact b R

The angle of impact gives the direction of the projectile velocity at the point of impact,
at a horizontal distance xR from the starting point (see Diagram 3, below Eq A-89). To

determine xm and ym we use the fundamental trajectory formulas of Eqs A-46, A-47, and

A-48 already derived.

From Eq A-48

Ym = Xm(tan B)(1 - Fm/F) (A-79)

in which, by definition,

F -1 + z-l + exp ) (A-80)
m In m

From Eqs A-46 and A-47, using F 5500 as already determined for z R = 11.0 we find
-1

z 2x w = 8.6 = log e 5501 (A-81)Zm me

Substituting the magnitude of zm from Eq A-81 into Eq A-80 gives:

F = 602 (A-82)
m
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Dividing Eq A-79 by 0. 5 w and using Eq A-81 we find

2Ym/W = zm(tan B)(1 - Fm/F) (A-83)

Substituting

z =8.6m
F = 5500

F = 602m

B = 20 degrees

into Eq A-83 gives the magnitude of 2Ym/W

2ym/W = 2. 8 (A-84)

Since

zm  2xm/W= 8.6

from Eq A-81, and

zR 2xR/w-- 11.0

from Eqs A-50 and A-75, we obtain

Xm/XR = 8.6/11 = 0. 78 (A-85)

Ym/XR = 2.8/11 = 0.26 (A-86)

It is also of interest to calculate the "impact angle" bR at which the projectile lands

at the end of its path through the air. This is found from (tan b) for the value zR = 11.0 as

assumed previously. From Eq A-44

tan bR +

tan B - 1 - F-(-1 +expz R )  
(A-87)

in which

ZR = 11.0

tan B = tan 200 = 0. 364

F = 5500

Substituting the above magnitudes into Eq A-87 we obtain

tan b R = -4.0 (A-88)
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Evaluating Eq A-88,

tan (-bR) 4. 0

ctn (-bR) = 0. 25

tan (90 + bR) = 0.25

90 ° + bR = 14 °

b = -90 0+ 140 (A-89)

bR = Impact angle

The magnitudes given by Eqs A-89, A-85, and A-86 have been plotted to scale in

Diagram 3. The scale is determined by the horizontal range xR which is taken to be 10 cm.

Diagram 3

Trajectory for Air Resistance
r = 8000 times Gravity

it ~APEX PIpI

20 DEGREES P3 Ym-" 2.6cm

PO m Xm = 7 8 cm 1%4
• I'

XR = I0.0 cm
I \

bR = IMPACT ANGLE (-900 '+ 14+ )

',140',

In the calculation of the trajectory form illustrated in Diagram 3 it has been assumed

that the relaxation distance w has the same magnitude at all points along the trajectory.

This follows from the definitions

2x /w = z R

2x/w = zm

2ym/w = Relative altitude
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from which Eqs A-85 and A-86 were derived. The use of a constant magnitude for w implies

a constant value of Q as shown by Eq A-21. Since a constant magnitude for Q has therefore

been assumed in calculating the trajectory shape in Diagram 3, it is necessary to investi-

gate how closely the constant value,

Q0 cos 200 =0. 94

from Eq A-78, actually applies to the trajectory. We are also assuming that a negligible

change in w occurs due to variation of CD or pa along the trajectory. Compare Eqs A-21

and A-23.

Considering the trajectory in Diagram 3, we see that Q is practically equal to cos B

Q =cos B =cos 200 = 0. 94

along the section from the points P 0to P. since the section is almost a straight line be-

tween these points. Between the points P Iand P 2the trajectory angle b changes from 20

degrees to zero (at the point P m) and down to -20 degrees. 'Thus (cos b) changes from 0. 94

to 1. 0 and back to 0. 94, which gives (cos b) avrg- .9 o h eto ewe
P1 and P. Between points P2 and P3 (ie, along the section2 P P ) the angle b is approxi-

mately -45 degrees and Q is 0. 7.

Thus the average value of Q for the entire section P 1 P 2 P 3 is approximately

QPP P3= (0.5)(0.,7 + 0.97)

= 0. 84

Finally, the average for the section P oP 3is nearly

QPP3 0. 5(0. 84 +0. 94)= 0. 89

which only differs by 5 percent from the value cos B = 0. 94 for the section P 0P V* These

results suggest that for a trajectory shape similar to Diagram 3, but with a different initial

angle B, one can use an "effective" value of Q in the calculation, in which Q is defined by

the following fundamental formula:

Q = (1 + N r)(cos B) (A-90)

where N ris an unknown relative fractional correction term which is, presumably, only a

few percent. The subscript r implies that N rmay vary with r which is the initial relative

air resistance compared to the force of gravity. Since we base Q on the particular "average"
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value of (cos b) along the entire trajectory which gives the correct range (which is unknown

in advance), it is evident that Eq A-90 merely relates one unknown Q in terms of another

unknown Nr . The advantage comes about because Nr can be shown to be nearly constant

for different values of cos B and also nearly constant for a wide range of the relative air

resistance r. Since N depends on the shape of the trajectory, we would expect N to re-r r

main nearly constant if the trajectory shape should remain nearly constant. On general

principles, one expects that the trajectory shape should depend on the initial angle B and

on the initial relative air resistance r compared to gravity. From the calculations leading

to Diagram 3 we know that r may be at least as large as 8000, but the corresponding value

for z is only 11. 0. Thus it seems reasonable to investigate how the trajectory shape

varies with different values of z R for a fixed initial angle B.

The question arises as to how the trajectory shape should be described mathematically.

The location of the highest point of the trajectory seems to be a significant parameter to in-

dicate the shape, .because it is a direct measure of the amount of asymmetry. For perfectly

symmetric trajectories (with any initial angle B) which occur when there is negligible air

resistance deceleration (r = 0) the relative location of the highest point of the trajectory is

exactly half way between the starting point and the impact point. Then

(xm/xR) s = 0.50 (A-91)

for perfect symmetry, where in general the symmetry parameter is defined to be the di-

mensionless distance ratio

xm/xR = Relative location of apex (A-92)

(See Diagram 3)

The departure from perfect symmetry would naturally be expressed as an "asymmetry"

parameter given by

(xm/xR - 0.5)

because the asymmetry parameter is zero for perfect symmetry, from Eq A-91.

From Eqs A-46 and A-50

x = 0.5wzm m
xR = 0. 5wz R

so that Eq A-92 also can be expressed as

Zm/ZR = xm/xR = apex location (A-93)
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The evaluation of the ratio Zm/ZR in Eq A-93 can be carried out in terms of the single

variable z R by using Eq A-45. Solving Eq A-45 for exp zm gives

exp zm= 1 + F (A-94)

Substituting the expression for F from Eq A-49 into Eq A-94 we obtain

exp z m 
= zR-1 (1+ exp zR) (A-95)

which may be written also

exp Zm = z 1 (exp zR)[ 1- exp (-ZR)] (A-96)

after factoring exp zR from the parenthesis in Eq A-95. SolvingEqA-96 for zmbytaking the

logarithm of both sides of the equation,

Zm = ZR - logez R + loge [1 - exp (-ZR (A-97)

Dividing both sides of Eq A-97 by zR we obtain the desired formula for Zm/ZR in terms of

zR for use in Eq A-93.

Zm/ZR= 1 - ZR logezR + ZR 1 loge[ - exp(-zR)]  (A-98)

When zR is not less than 4 the third term on the right side of Eq A-98 is negligible com-

pared to 1 as can be easily proved by expanding the logarithm of [1 - exp (-ZR)]. For

example, when zR = 4.0,

exp (-4) = (55) 1 = 0.018

and log e (1 - 0. 018) is very nearly -0. 018 from the expansion

2
log (1+n)=nn +e 2

Therefore the absolute value of the third term on the right of Eq A-98 for zR = 4.0 is

(0.018)(1/4) = 0. 0045, which is negligible compared to 1. 0 being only 0.45 percent. When

zR is greater than 4. 0 the term is even less than 0. 0045. It is of interest to investigate

the remaining expression for Zm/ZR in Eq A-98 when zR becomes large. Then,

Zm/ZR = 1 - zR1 logeZR  (A-99)

[zR_ 4]
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Hence, finally, the relative horizontal location

Xm/XR

of the highest point of the trajectory, or "apex", is found from Eqs A-99 and A-93 to be

Xm/XR = 1 - ZR logez R  (A-100)

when zR is not less than 4. 0. Table A-I gives various Xm/XR calculated from Eq A-100

for integer zR from 4 to 12.

Note: logez * 2.3e R' lo10 zR

Corresponding magnitudes of F from Eq A-49 and r from Eq A-71 are also given. The

values of r obtained from Eq A-71 are for

Q= cos 20 = 0.94 = cos B

B = 20 degrees

The representative trajectory shown in Diagram 3 was calculated for an initial angle B

equal to 20 degrees, and with r = 8000.

TABLE A-I

Relative Apex Location for B = 20 Degrees

Dimensionless Dimensionless Relative Air
distance acceleration apex resistance

ratio ratio location (g's)
zR F Xm/XR r

0 0 0.50 0
4 12.5 0.65 18.2
5 28.7 0.68 42.5
6 66.0 0.70 96.0
7 156.0 0.72 228.0
8 368.0 0.74 538. 0
9 904.0 0.76 1330.0
10 2240.0 0.77 3280.0
11 (Dia 3) 5500.0 0.78 8000.0
12 13400.0 0.79 19600.0

In Table A-i, above, the magnitudes corresponding to zR = 11.0

ZR= 11

F = 5500

r = 8000

Xm/XR = 0. 78
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have been determined already for the trajectory of Diagram 3. Also, in Table A-I the vari-

ous magnitudes are all calculated for the single initial angle B = 20 degrees.

The question now arises as to how the relative apex location Xm/XR changes when B

changes, for a given fixed value of the air resistance r.

From Eq A-71, and a simple trigonometric identity,

r = FQ(2 sin B cos B) - 1  (A-101)

From Eq A-90,

Q = (1 + N r) cos B

Substituting the expression for Q into Eq A-101 gives

r F(2 sin B)-1(1 + Nr  (A-102)

Solving Eq A-102 for F

F 2(sin B)(1 + Nr) -r (A-103)

The expression for r in terms of primary physical quantities is easily determined

from the fundamental definition in Eq A-68.

For a given fixed r, we see from Eq A-103 that F is nearly proportional to (sin B),

since Nr is small and nearly constant. From Fig. 1 the quantity zR is nearly proportional

to log 1 0 F, since the graph is nearly a straight line. Hence zR varies nearly as log 1 0

(sin B), which means that zR varies slowly with respect to B. From Table A-I it is

evident that the apex location changes slowly with respect to a change of zR when zR is

greater than 5. 0, or r is greater than 40. 0. Hence, finally, the apex location changes

at a doubly slow rate with respect to a change of B.

From Eq A-103 we see that F is not only proportional to (sin B) but also proportional

to r. Therefore, the change of apex location in Table A-I due to a given fractional change

of r is exactly the same as the change of apex location due to the same fractional change

of (sin B). This is proportional to the fractional change (dB/B), with a factor (B ctn B),

since the fractional change of (sin B) is

d(sin B) - (cos B)dB = [Bt B)1 dB'B) ' oB)dBB) (A-104)
sin B siB - ctn B (cos B

Since the relative apex .location xm/xR changes at a very slow rate with respect to

either r or B, when r is greater than 40, the trajectory shape always remains fairly simi-

lar to the representative one shown in Diagram 3, for which it was shown that Eq A-90
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could be applied with good accuracy. Therefore, it should be possible to apply Eq A-90

over a wide range of B and r.

Differentiating both sides of Eq A-90 with respect to B, we obtain

dQ/dB = -(1 + Nr ) sin B (A-105)

Dividing Eq A-105 by Eq A-90

Q- l(dQ/dB) = -tan B (A- 106)

Substituting the expression for

Q I(dQ/dB)

from Eq A-106 into Eq A-65 gives the following fundamental formula for the initial angle

B at which the maximum horizontal range occurs:

zR = 2(1 + ctn Bm ctn 2B ) (A-107)

Equation A-107 applies only when zR is not less than 4. 0, as already explained. In

order to relate the initial angle B in Eq A-107 to the relative air resistance r for variousm
magnitudes of Bm and r, it is necessary to make intermediate calculations of z R and F.

The steps in the procedure are:

(a) zR from Eq A-107, given B m

(b) F from Eq A-49, using zR

(c) r from Eq A-102 using F from (b) and given B
m

In order to use Eq A-102 it is necessary to make some assumptions concerning N .r

If a constant value ofNr is not assumed, it is necessary to use a series of successive ap-
proximations to establish Nr for each trajectory corresponding to a given value of r and of

B . This is not justified because of the already existing uncertainties in the variations
m

of pa and of CD along the trajectories. Hence it will be assumed, when r exceeds 40, that

N = 0 since this is as good a constant value as is known over a wide range of r and B.r
The required formulas are listed together for convenience of reference:

(a) zR= 2(1 + ctn B. ctn 2B m )

(b) F -1 + zR (-1 + exp zR)

(c) r = F(2 sin Bm ) _

The results of various calculations using (a), (b), and (c) are collected in Table A-IR.

The quantities B m and log1 0 (r + 1) from Table A-II are plotted as a graph in Fig. 3. From

Fig. 3, for any given air resistance r over a wide range of typical magnitudes, one can
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immediately find the corresponding initial angle B m at which a projectile must be started
in order to reach its maximum horizontal range, (XR)max* The initial air resistance r

is obtained from Eq A-68 in terms of primary physical parameters of the projectile and

the air.

TABLE A-HI

Initial Angle for Maximum Range

Initial Air Quantity
angle Distance Acceleration resistance plotted in

(degrees) ratio ratio (g's) Fig. 3
Bm ZR F r log1 0 (r + 1)

45 0 0 0 0
30 4.0 12.5 12.5 1.13
25 5.6 47.0 55.00 1.75
22.5 6.8 133.0 173.0 2.24
20 8.5 590.0 870.0 2.94
17 11. 7 1.03(104) 1. 77(104) 4.25
15 14.9 2.0(105) 3.86(105) 5.59
10 33.2 6.7(1012) 1. 92(1013)

For B = 45 degrees, the air resistance r is zero. From Eq A-102 it follows that
F = 0. Also, from the limit of Eq A-49, or from Fig. 2, we see that zR = 0. Finally,

logl 0 (1 + r) = 0 when r = 0.

Summary

For convenience of reference, all the more fundamental trajectory formulas (equa-

tions) are collected and listed below with notes describing the location of the preceding

formulas from which they were taken:

k - I1 = (p aI/ 15. 25)C D Lm/A) (A-108)

(converting Eq A-4 from cm to feet)

k- A characteristic length (feet), related to the relaxation distance.

k A deceleration parameter (feet- ), which is defined as the fractional
loss of velocity, per unit distance, due to air resistance (see A-3' above).

p a Air density (gm/cm 3 ) = specific gravity relative to water.

CD Drag coefficient (dimensionless).

m Mass of projectile (gm).

A Frontal projected area (cm )
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The use of Eq A-108 is simplified in many cases by expressing the projectile mass

m in terms of its density and volume. Also, the volume can be expressed in cubic inches
3

instead of cm . Equation A-108 becomes

k -- = (s/6)(lP/Pa)CD1  (A-109)

k- 1  Characteristic length (feet).

s "Effective'" projectile thickness (inches), defined as the projectile
volume (in ), divided by the frontal projected area (in 2 ).3

P Projectile density (gm/cm ) = specific gravity relative to water,defined as the mass (gm), divided by the volume (cm ).

p a Air density (gm/cm 3).

CD Drag coefficient (dimensionless).

From Eq A-21

w = kal1Q
a

w Relaxation distance (feet).

k-1 Average value of k-1 along the trajectory.
a

Q Average value of (cos b) along the trajectory.

b Angle of velocity vector with respect to the horizontal direction,

From Eq A-90

Q = (cos B)( + Nr)

Q Average value of (cos b) along the trajectory.

B Initial value of b at the beginning of the trajectory.

N Relative fractional correction term (small compared to 1. 0).
r

From Eq A-68

-1k V2
a B

r Initial air resistance drag deceleration, divided by the acceleration due
to gravity (dimensionless ratio).

g Acceleration due to gravity, 32 ft/sec2

VB Initial projectile velocity (ft/sec).

In other words, r measures the initial drag on the projectile in terms of "g units".
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From Eq A-103

F = 2r(sin B)( + Nr

F = Dimensionless deceleration ratio, related to the initial drag deceleration r.
Also, F may be considered to be the vacuum range (g-iV2 sin 2B) divided
by the relaxation distance w, as expressed by Eq A-38. B

The relaxation distance w is the horizontal distance at which the horizontal velocity

component Vx has declined to i/e of its initial value V1 at the beginning of the trajectory.

(See Eq A-32 below.)

From Eq A-41
z =2(x/w)

x Horizontal distance along the trajectory (feet).

w Relaxation distance (feet).

z Dimensionless horizontal distance ratio.

From Eq A-32

Vx = V1 exp (-x/w)

V Horizontal component of the projectile velocity at any point along the
x trajectory (ft/sec).

V1  Initial value of Vx at the beginning of the trajectory (ft/sec).

From Eq A-35

tx = (w/V 1 )[ -1 + exp (x/w)]

t = Time of flight (seconds) at horizontal distance x (feet), along the trajectory.x

From Eq A-44

tnb V /V -Itanb yx 1 - F (-I +exp z)
tan B tan B

tan b = Slope of trajectory at any point

V = Vertical component of the projectile velocity at any point along its tra-y

jectory (ft/sec)

From Eq A-43

y/x-- 1=- Fl [-I+ z-i (-1 + exp z)]
tan B1

y = Vertical altitude (feet), relative to beginning point of the trajectory, at a
horizontal distance x feet along the trajectory.
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From Eq A-79

= Xm (tan B) (1- Fm/F)

From Eq A-80

F -1 + z- (-1 + expz)
m m In

From Eqs A-47 and A-46

zm = loge (1+ F) = 2x m/w

From EqA-46

x = (0. 5)wz

Ym = Maximum vertical height (feet), of projectile, above the starting point.

x = Horizontal distance (feet), of projectile when it is at its maximum vertical
height.

From Eq A-50

xR = (0. 5)wzR

in which zR is the solution of the following equation.

From Eq A-49

F = -1 + zR (-1 + exp zR)

The solution zR of Eq A-49 is obtained from the graphs plotted in Figs. 1 and 2.

From Eq.A-107

z R = 2( +ctn B ctn 2BRm in

B = Initial trajectory angle B at which a projectile will reach the maximum
horizontal range xR.

Values of z R have been calculated and collected in Table A-II for various B m. Values

of Bm have been plotted as a graph in Fig. 3 in terms of the initial air resistance r. The

initial air resistance r is obtained from Eq A-68, above.

When r exceeds 40, the correction term N in Eq A-90 is taken to be zero except for
r

very accurate trajectory calculations in which successive approximations are used, and the-1
total trajectory is divided into sections over which k and (cos b) are nearly constant. How-

ever, Nr may be different from zero when the air resistance r is less than 40.
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